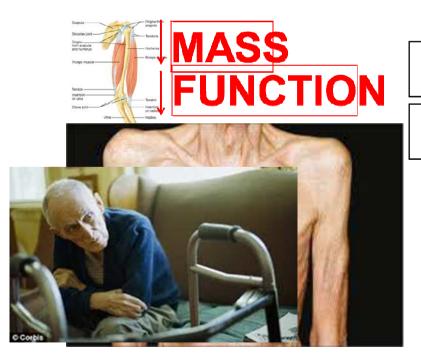
VII CONGRESSO NAZIONALE B&M 2018

IV SESSIONE

Obesità e Sarcopenia

Rocco Barazzoni



Dept of Medical, Surgical and Health Sciences University of Trieste - Italy

REPORT

Sarcopenia: European consensus on definition and diagnosis

Report of the European Working Group on Sarcopenia in Older People Cruz-Jentoft et al, Age Ageing 2010

STRENGTH

PERFORMANCE

SARCOPENIA: a complex MULTIFACTORIAL Syndrome

SENESCENCE

MOTONEURON

Satellite CELLS

DYSFUNCTION

NUTRITION

ANOREXIA

MALABSORPTION

ENDOCRINE

↓SEX HORMONES

↓ VITAMIN D

↓ GH-IGF1

METABOLISM

AGING

A PERFECT METABOLIC STORM

MUSCLE DISUSE

IMMOBILITY

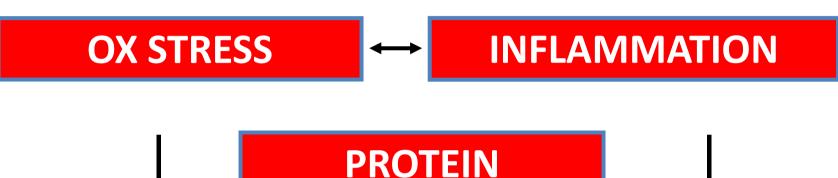
SEDENTARY Lifestyle

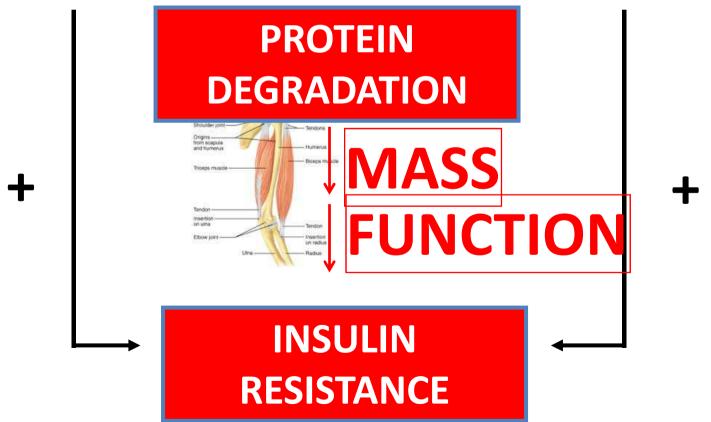

AGING

A PERFECT METABOLIC STORM

OX STRESS

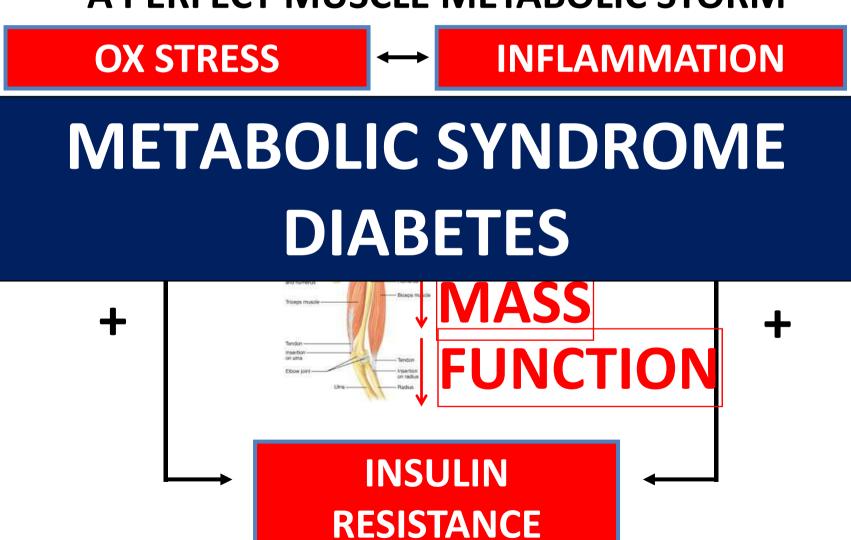
PROTEIN DEGRADATION INSULIN RESISTANCE




OVERWEIGHT and OBESITY

"Chronic conditions characterized by abnormal-excess fat accumulation leading to excess morbidity" (WHO) Clinical = $BMI > 30 \text{ kg/m}^2$

OBESITY per se

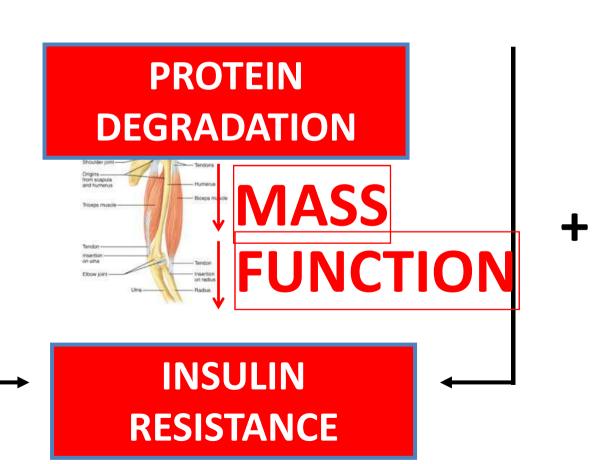

A PERFECT MUSCLE METABOLIC STORM

COMPLICATED OBESITY

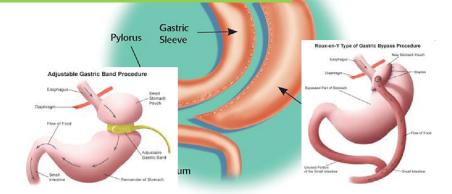
A PERFECT MUSCLE METABOLIC STORM

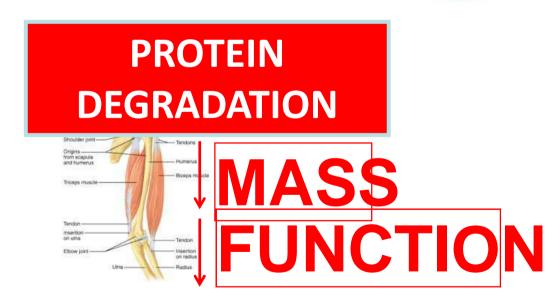
ACUTE and CHRONIC DISEASE

A PERFECT MUSCLE METABOLIC STORM


OX STRESS

INFLAMMATION





THERAPEUTIC WEIGHT LOSS BARIATRIC SURGERY

-Deficiencies

Sarcopenic Obesity: The Confluence of Two **Epidemics**

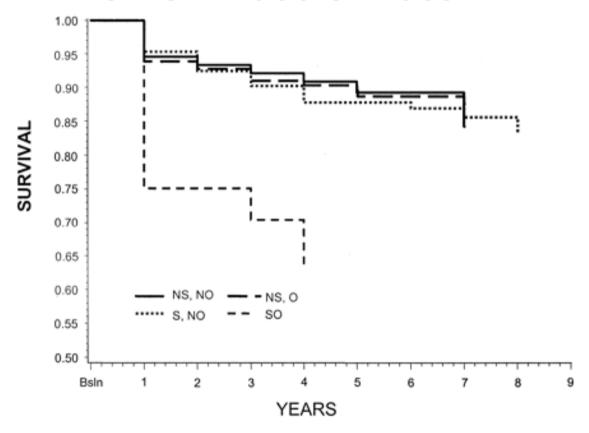
EXHAUSTION

WEAKNESS

SLOWNESS

INACTIVITY

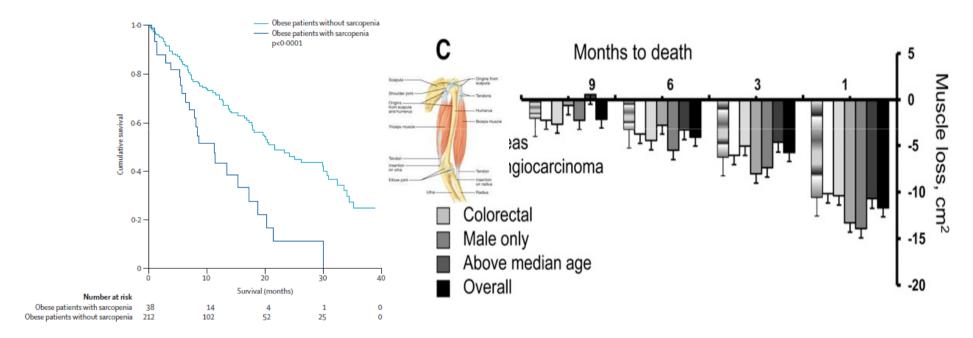
AGING


Ronenn Roubenoff

OBESITY RESEARCH Vol. 12 No. 6 June 2004 887

Garcia-Esquina et al, Obesity 2015

Increased frailty in obese individuals with lower muscle mass



Baumgartner et al, Ob Res 2004

Beyond BMI

BODY COMPOSITION

Low Lean Mass and Lean Mass loss predict mortality in OBESE CANCER patients

Prado et al, Lancet Oncol 2008

Prado et al, Am J Clin Nutr 2013

AWARENES!! Malnutrition!!

ESPEN guidelines on definitions and terminology of clinical nutrition

T. Cederholm ^{a. *}, R. Barazzoni ^b, P. Austin ^{c. y}, P. Ballmer ^d, G. Biolo ^e, S.C. Bischoff ^f, C. Compher ^{g. 1}, I. Correia ^{h. 1}, T. Higashiguchi ^{i. 1}, M. Holst ^j, G.L. Jensen ^{k. 1}, A. Malone ^{l. 1}, M. Muscaritoli ^m, I. Nyulasi ^{n. 1}, M. Pirlich ^o, E. Rothenberg ^p, K. Schindler ^q, S.M. Schneider ^r, M.A.E. de van der Schueren ^{s. 2}, C. Sieber ^t, L. Valentini ^u, J.C. Yu ^{v. 1}, A. Van Gossum ^w, P. Singer ^x

Clin Nutr 2016

penic obesity beyond those for sarcopenia and obesity separately. Currently, there are no commonly accepted criteria for sarco-

Validity and Reliability of Tools to Measure Muscle Mass, Strength, and Physical Performance in Community-Dwelling Older People: A Systematic Review

Mijnarends et al, JAMDA 2013

MUSCLE MASS

MUSCLE PERFORMANCE

MUSCLE STRENGTH

Chest press²⁷ Dumbbell⁶⁹ Elastic bands⁶⁹

Handheld dynamometer 18-26

Continuous scaled physical functional performance30

Figure-8 walk³⁹

Fullerton Functional Fitness Test battery^{47.}* Functional reach 52.

CAITRite mat (4.6-m mat with sensor)46,8 Gait speed (2 m to 1 km)^{21,3637,40,42,42,40,52–55,}

BIA

Single frequency Multifrequency⁷ **SARCOPENIA**

OBESITY

% Body Fat

need (6 min)32,37,38,51,56,4

BOD POD⁷⁴ Calf circumferen CT13,17,83

DXA14-17,78-81

 MRI^{17}

Equation for LB\

VARIABLE DEF

26-fold VARIATION in SO prevalence

ty assessment tool-SF58,*

cation scale; chair rise, stair at, kneel, supine rise44 al capacity evaluation: ing speed, grip, etc.35,*

al performance test al performance test

Elderly population

ported physical function tems)3

37,40,50,54,+

Batsis et al, J Am Geriatr Soc 2013

Sit to stand 5 times 31.34.40.42.43.49

Ultrasonography 13

Manual muscle testing 19 Vigorimeter²⁰

Sit to stand 10 times⁴⁸

Sit to stand 30 sec41.45

Plate with spring gauge²⁸ Pull down²⁹

Skin-fold thickness 4-C model 76,83

ESPEN suggestion for diagnostic criteria for malnutrition

Step 1. Risk screening by a validated instrument, e.g. NRS-2002, MUST, MNA(-SF), SNAQ, ...

i.e. BMI, Weight loss, Reduced food intake, Disease severity

Step 2. Diagnosis is confirmed by

BMI <18.5 kg/m²

or

- Weight loss >10% (indefinite time)/>5% last 3 mo
 combined with either
- BMI <20 (<70 y)/<22 (>70 y) or
- FFMI <15 and 17 kg/m² in women and men, respect.

Global Leadership Initiative in Malnutrition

Core committee

ASPEN: GL Jensen / C Compher

ESPEN: T Cederholm / A Van Gossum

FELANPE: I Correia / MC Gonzalez

PENSA: R Fukushima / T Higashiguchi

Working group

G Baptista, R Barazzoni, R Blaauw, A Crivelli, D Evans, L Gramlich, V Fuchs, S Jones, H Keller, A Malone, K Mogensen, M Muscaritoli, M Pirlich, V Pisprasert, M de van der Schueren, S Siltharm, P Singer, K Tappenden, D Waitzberg, NV Fuentes, L Lido, P Yamwong, J Yu, I Nyulasi

THE EUROPEAN
SOCIETY FOR
CLINICAL
NUTRITION AND
METABOLISM

ALGORYTHM FOR MALNUTRITION DIAGNOSIS

Screening

At risk for Malnutrition

• Use validated screening tools

Diagnosis

Assessment Criteria

- Phenotype
 - o Weight loss
 - ↓BMI (underweight)
 - o ↓ Muscle Mass
- Etiology
 - ↓ Food intake (or absorption)
 - o ↑ Inflammation Disease

YES

AT LEAST

1 Phenotype Criterion

AND

• 1 Etiology Criterion

Cut-Offs and SURROGATES: THE FINAL HURDLE?

◆ ↓ MUSCLE MASS

E.G: fat free mass index (FFMI, kg/m²) by DEXA or BIA, CT, MRI.

Ethnicity adaptation NEEDED

ALTERNATIVES: when not available or by regional preference:

- physical exam
- standard anthropometric measures
- functional assessments (e.g. hand-grip strength) may be considered as a SUPPORTIVE measure.

**Acute disease/injury-related with severe inflammation.

E.G: major infection, burns, trauma or closed head injury

***Chronic disease-related with chronic or recurrent mild to moderate inflammation.

E.G.: malignant disease, COPD, CHF, CKD or any disease with chronic or recurrent Inflammation.

C-reactive protein may be used as a supportive laboratory measure.

CLINICAL approach SARCOPENIC OBESITY

INTEGRATED OBESITY PERSPECTIVE

OBESITY

COMPLICATIONS COMORBIDITIES

+

THERAPEUTIC WEIGHT LOSS BARIATRIC SURGERY

1000 - 1130 Joint Session with ESPEN - Sarcopenic Obesity: From Pathophysiology to Nutritional approach
Chairs: K Schindle: (Austria), R Vetter (Etaly)

1000 - 1030 Inflammation: the common ground?

1001 - 1010 Chroid (disease, desity) and protein metabolism

Y Boine (France)
1100 - 1110 Sarropenic obesity: diagnosis and nutritional treatment

R Barrazzoni (Inby)

AGING
CANCER
CHRONIC DISEASE

ESPEN-EASO Position paper

Sarcopenic Obesity: Time to meet the challenge

Barazzoni et al, Clin Nutr in press 2018

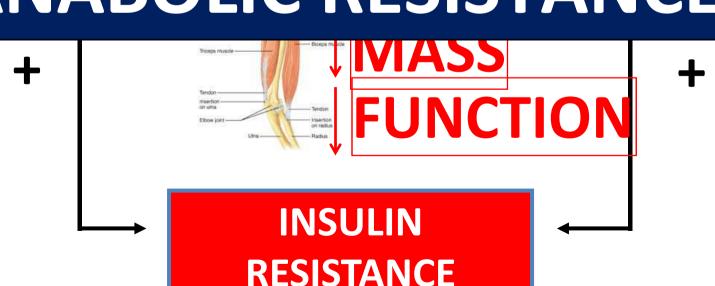
TREATMENT: multimodal approach

- NUTRITION
- EXERCISE (PA)
- HORMONAL PHARMACOLOGICAL

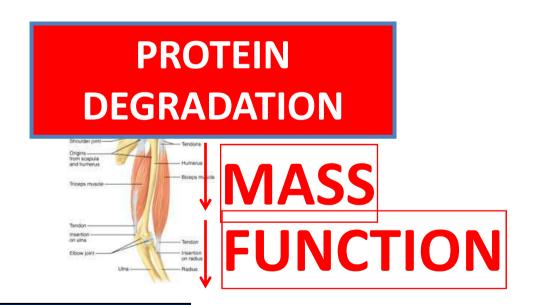
LITTLE DATA FUCUSING on

OBESE-SARCOPENIC OBESE INDIVIDUALS!!

OBESITY!!

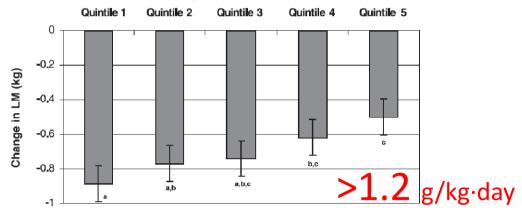

A PERFECT METABOLIC STORM

OX STRESS


INFLAMMATION

PROTEIN

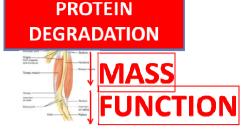
ANABOLIC RESISTANCE



NUTRITION QUANTITY

PROTEIN?

Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study^{1–3}


Taku et al, Am J Clin Nutr 2007

INCREASING PROTEIN INTAKE

(gr / kg BW · day OR PERCENT energy/day)

- 个LEAN MASS
- ↓SARCOPENIA
- 个PHYSICAL
- 个MUSCLE STRENGTH

Beasley et al, J Am Geriatr Soc 2013; Farsijani et al, Am J Clin Nutr 2016; Chorong et al, Nutrition 2016; Isanejad et al, Br J Nutr 2016

HEALTHY OLDER ADULTS

CLINICAL NUTRITION

ESPEN endorsed recommendation

Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group

Nicolaas E.P. Deutz ^{a,*}, Jürgen M. Bauer ^b, Rocco Barazzoni ^c, Gianni Biolo ^c, Yves Boirie ^d, Anja Bosy-Westphal ^e, Tommy Cederholm ^{f,g}, Alfonso Cruz-Jentoft ^h, Zeljko Krznariç ⁱ, K. Sreekumaran Nair ^j, Pierre Singer ^k, Daniel Teta ^l, Kevin Tipton ^m, Philip C. Calder ^{n,o} Clin Nutr 2015

1-1.2 g/kg · day

CHRONIC KIDNEY DISEASE HEMODIALYSIS – PERITONEAL DIALYSIS

ESPEN GLs: 1,2-1,4 g/kg BW

Cano et al, Clin Nutr 2009

LOW-CALORIE DIET

	High Protein		Standard Protein				Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
≥12 Weeks									
Belobrajdic 2010 (27)	-1.9	3	34	-3.1	4.3	42	3.6%	1.20 [-0.45] 2.85]	
Campbell 2010 (28)	-1.6	1.1	13	-2.2	1.6	15	7.4%	0.60 [-0.41, 1.61]	+
Evangelista 2009 (30)	0.6	1	5	-0.3	0.3	5	8.3%	0.90 [-0.02, 1.82]	
Farnsworth 2003 - F (11)	-0.1	1.4	21	-1.5	1.4	22	9.2%	1.40 [0.56, 2.24]	
Farnsworth 2003 - M (11)	-2.5	7.4	7	-1.9	5.6	7	0.2%	-0.60 [-7.47, 6.27]	←

Intervention for MUSCLE maintenance

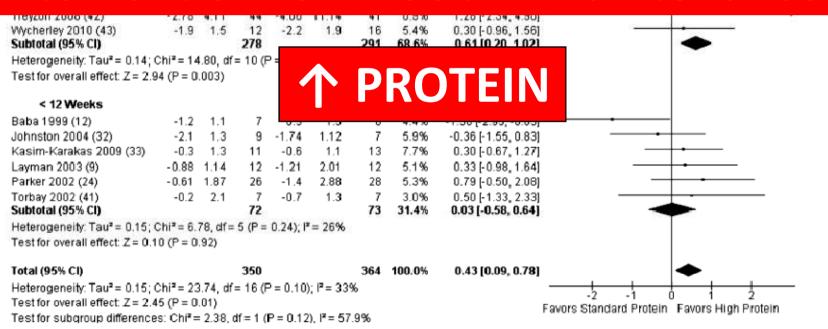


FIGURE 5. Meta-analysis for changes in fat-free mass (kg) in randomized controlled trials that compared high-protein, low-fat diets with isocalorically prescribed standard-protein, low-fat, energy-restricted diets, IV, inverse variance.

OBESITY + DISEASE

GUIDELINES INTENSIVE CARE (ASPEN)

NUTRITIONAL SUPPORT

PROTEIN: Very High-Protein

BMI < 40: 2 g/kg IBW

BMI > 40: 2.5 g/kg IBW

McClave et al, JPEN 2016

OBESITY + DISEASE

GUIDELINES INTENSIVE CARE (ASPEN)

NUTRITIONAL SUPPORT CALORIE

- DO NOT OVERFEED
- PROVIDE ADEQUATE CALORIES
- PREVENT METABOLIC COMPLICATIONS

PERMISSIVE UNDERFEEDING (65-70%)

BMI < 50: 11-14 kcal/kg actual BW

BMI > 50: 22-25 kcal/kg IBW

McClave et al, JPEN 2016

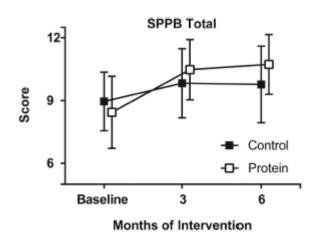
«GENERAL» OBESITY GUIDELINES?

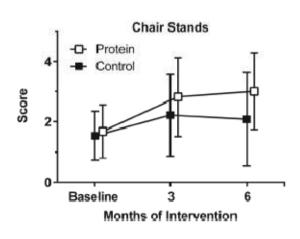
2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society

3b. Prescribe a calorie-restricted diet, for obese and overweight individuals who would benefit from weight loss, based on the patient's preferences and health status, and preferably refer to a nutrition professional* for counseling. A variety of dietary approaches can produce weight loss in overweight and obese adults, as presented in CQ3, ES2.

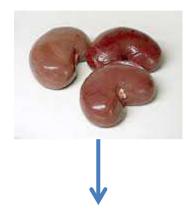
A (Strong)


- Higher-protein diet (25% of total calories from protein, 30% of total calories from fat, and 45% of total calories from carbohydrate), with provision of foods that realize an energy deficit.
- Higher-protein ZoneTM-type diet (5 meals/d, each with 40% of total calories from carbohydrate, 30% of total calories from protein, and 30% of total calories from fat) without formal prescribed energy restriction but with a realized energy deficit.


SARCOPENIC OBESITY

IF SEEKING WEIGHT LOSS:

-Preserve MUSCLE MASS (个protein, exercise)

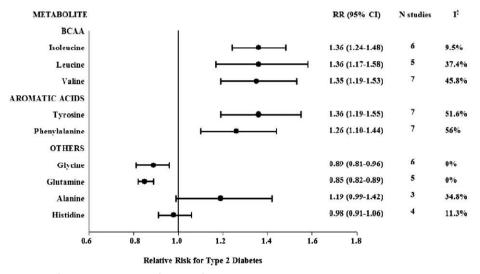

Improved Function With Enhanced Protein Intake per Meal: A Pilot Study of Weight Reduction in Frail, Obese Older Adults Porter Starr et al, J Gerontol Med Sci 2016

High-Protein Diet SAFETY - FEASIBILITY

Protein and Chronic Kidney Disease

Change in Estimated GFR

Quart	Participants with Normal Renal Function (n = 1135)‡	Participants with Mild Renal Insufficiency (n = 489)§						
Intake	mL/min per 1.73 m²							
ᆵ	0 (referent)	0 (referent)						
Protein	2.45 (-0.98 to 5.88)	-2.51 (-6.25 to 1.23)						
te	1.82 (-1.77 to 5.41)	-0.10 (-4.06 to 3.86)						
7	2.23 (-1.66 to 6.12)	-0.32 (-4.50 to 3.86)						
ш.	0.46 (-3.83 to 4.75)	-4.77 (-9.52 to -0.02)						
	Knight et al Ai	nn Int Med 2003						

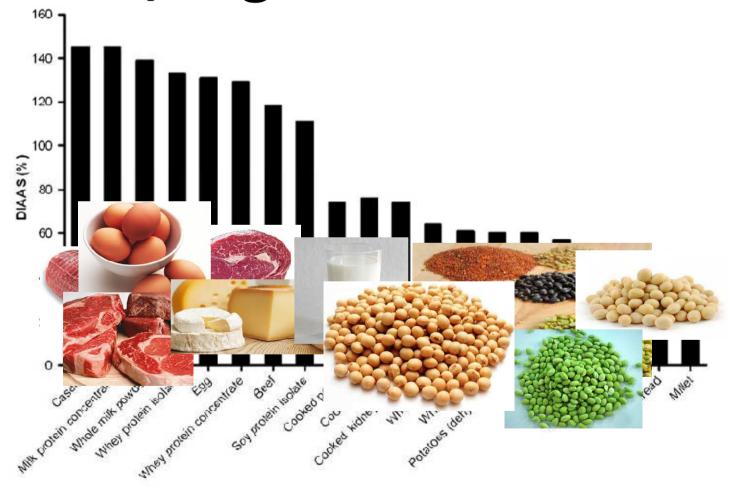

Higher Protein intake NOT indicated in elderly individuals if GFR<30

Bauer et al, JAMDA 2013

Protein and Chronic Metabolic Complications

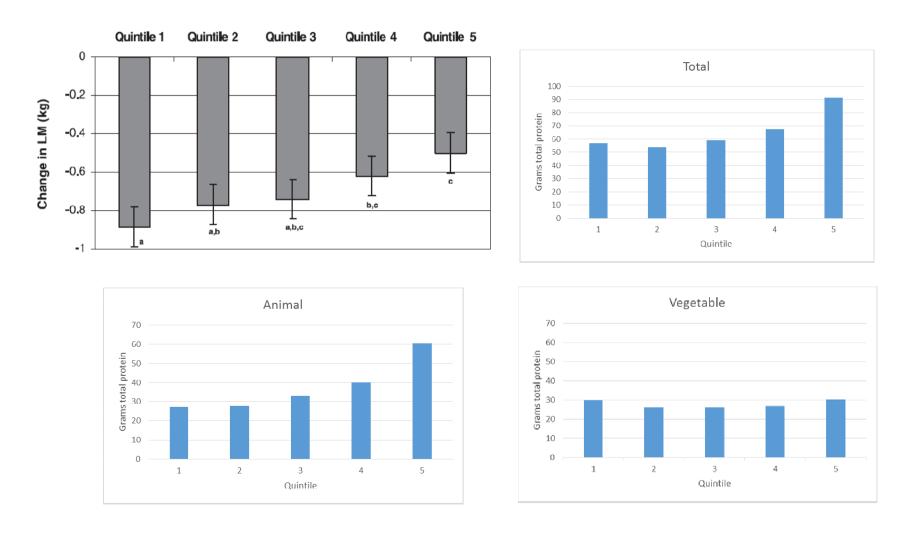
Excess Plasma AMINO ACIDS predict INSULIN RESISTANCE and DIABETES

RISK-BENEFIT evaluation (statins)

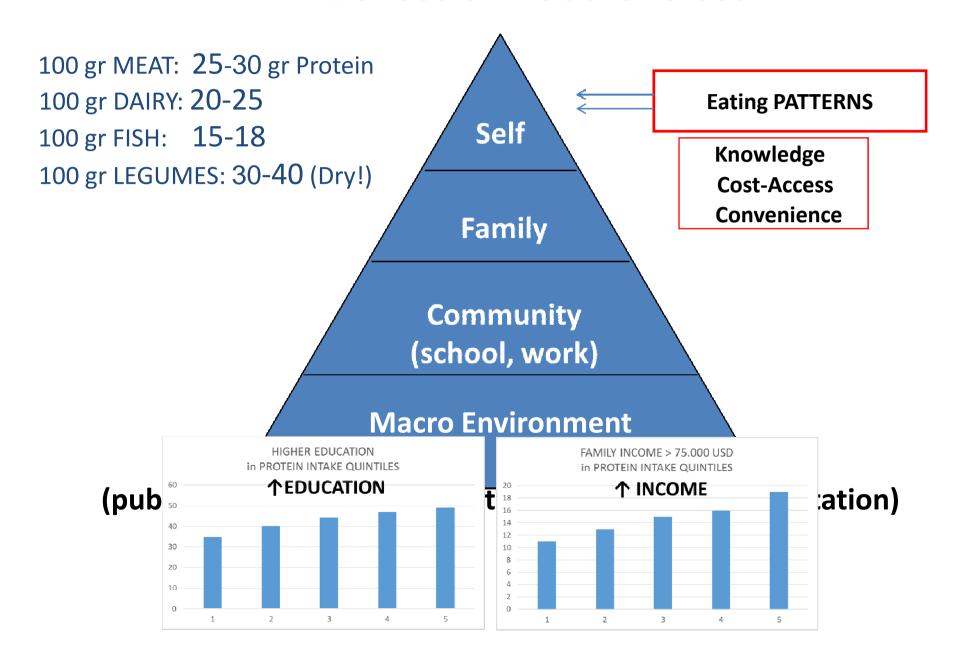

Guasch-Ferre et al, Diabetes Care 2016

Protein Ingestion Induces Muscle Insulin Resistance Independent of Leucine-Mediated mTOR Activation

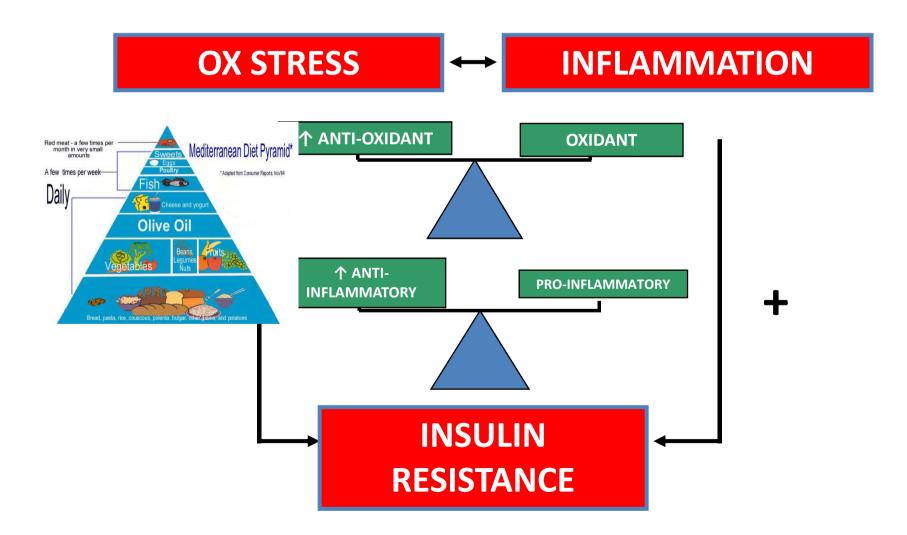
Smith et al, Diabetes 2015

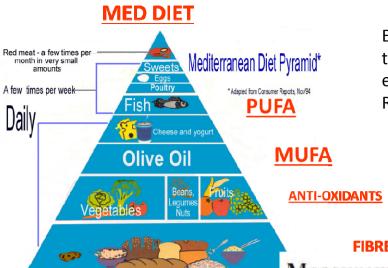

Protein QUALITY

Animal/Vegetable


DIAAS Digestible Indispensable AA Score

Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study^{1–3}




Taku et al, Am J Clin Nutr 2007

Influences on Food Choices

NUTRITION QUALITY

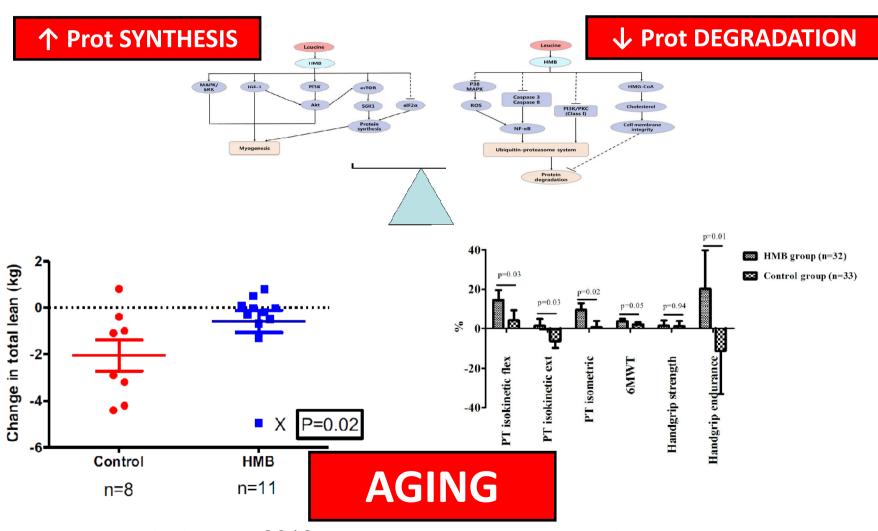
Eur J Nutr. 2017 Mar 16. doi: 10.1007/s00394-017-1422-2. Association of the Baltic Sea and Mediterranean diets with indices of sarcopenia in elderly women, OSPTRE-FPS study. Isanejad M1,2, Sirola J3,4, Mursu J5, Rikkonen T3, Kröger H3,4, Tuppurainen M6, Erkkilä AT5.

FIBRE

Measurements of skeletal muscle mass and power are positively related to a Mediterranean dietary pattern in women

Kelaiditis et al, Osteoporosis Int 2016

Table 2 Measures of muscle mass, muscle strength, and inflammation by quartile of Mediterranean diet score in 2570 females aged 18-79 years


	Model	Q1	Q2	Q3	Q4	Q4-Q1	P trend
Mediterranean diet score (points)		0-3	4	5	6-9	4	= "
Fat-free mass (%)	71=	897	538	461	674	-	-
	1	60.9 ± 0.3	60.6 ± 0.3	61.3 ± 0.3	61.6 ± 0.3	0.7 ± 0.4	0.021
	2	60.7 ± 0.2	60.6 ± 0.3	61.6 ± 0.3	61.6 ± 0.2	0.9 ± 0.3	< 0.001
	2	60.7 ± 0.2	60.6 ± 0.3	61.6 ± 0.3	61.7 ± 0.2	1.0 ± 0.3	< 0.001
Fat-free mass index (kg/m²)	n=	897	538	461	674	_	2000
	1	14.9 ± 0.1	15.0 ± 0.1	15.2 ± 0.1	15.1 ± 0.1	0.1 ± 0.1	0.050
	2	15.0 ± 0.1	15.0 ± 0.1	15.1 ± 0.1	15.1 ± 0.1	0.1 ± 0.1	0.076
	3	15.0 ± 0.1	15.0 ± 0.1	15.1 ± 0.1	15.1 ± 0.1	0.1 ± 0.1	0.086
Grip strength ^a (kg)	/1=	303	214	188	244		1/2/200000
	1	28.6 ± 0.4	28.2 ± 0.5	28.8 ± 0.4	29.4 ± 0.4	0.8 ± 0.5	0.470
	2	28.9 ± 0.3	28.6 ± 0.4	28.8 ± 0.4	28.7 ± 0.3	-0.1 ± 0.5	0.855
	3	28.8 ± 0.3	28.6 ± 0.4	28.8 ± 0.4	28.7 ± 0.3	-0.1 ± 0.5	0.855
Arm muscle qualitya (kg/kg)	n=	303	214	188	244	E	
	1	13.3 ± 0.2	13.1 ± 0.2	13.6 ± 0.2	13.7 ± 0.2	0.4 ± 0.2	0.077
	2	13.4 ± 0.1	13.2 ± 0.2	13.5 ± 0.2	13.5 ± 0.2	0.1 ± 0.2	0.472
	3	13.4 ± 0.1	13.2 ± 0.2	13.5 ± 0.2	13.5 ± 0.2	0.1 ± 0.2	0.472
Leg explosive power ^b (watts/kg)	n=	662	410	340	502	2	Service
	1	87.4 ± 1.5	90.3 ± 1.8	92.6 ± 2.0	94.7 ± 1.8	7.3 ± 23	0.001
	2	86.8 ± 1.4	90.8 ± 1.8	92.5 ± 1.9	95.0 ± 1.7	8.2 ± 2.2	< 0.001
	3	86.8 ± 1.4	90.7 ± 1.8	92.7 ± 1.9	95.1 ± 1.7	8.3 ± 2.2	< 0.001
C-reactive protein (mg/L)	n=	497	359	315	487	_	-
The second section of the sect	1	1.6 (1.5, 1.8)	1.6 (1.4, 1.8)	1.6 (1.5, 1.8)	1.6 (1.4, 1.7)	<u> </u>	0.644
	2	1.6 (1.5, 1.8)	1.6 (1.4, 1.7)	1.6 (1.5, 1.8)	1.6 (1.5, 1.7)	-	0.879
	3	1.6 (1.5, 1.8)	1.6 (1.4, 1.7)	1.6 (1.4, 1.8)	1.6 (1.5, 1.7)		0.842

NUTRACEUTICALS

overcome-reduce anabolic resistance!

ANABOLIC SUBSTRATES ANTIINFLAMMATORY ANTIOXIDANTS

ESSENTIAL AMINO ACIDS and METABOLITES (Leucine: HYDROXY-METHYL BUTYRATE)

Deutz et al, Clin Nutr 2013

Berton et al, PLoS One 2015

VITAMIN D

Vitamin D Deficiency-Induced Muscle Wasting Occurs through the Ubiquitin Proteasome Pathway and Is Partially Corrected by Calcium in Male Rats

Mehrajuddin Bhat, Ramesh Kalam, Syed SYH Qadri , Seshacharyulu Madabushi, and Ayesha Ismail

Endocrinology 2013

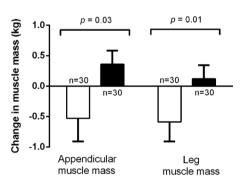
Vitamin D deficiency down-regulates Notch pathway contributing to skeletal muscle atrophy in old wistar rats

Carla Domingues-Faria^{1,2,4}, Audrey Chanet^{2,4}, Jérôme Salles^{2,4}, Alexandre Berry^{2,4}, Christophe Giraudet^{2,4}, Véronique Patrac^{2,4}, Philippe Denis^{3,4}, Katia Bouton^{2,4}, Nicolas Goncalves-Mendes¹, Marie-Paule Vasson^{1,5}, Yves Boirie^{2,6} and Stéphane Walrand^{2,4*}

Nutr Metab 2014

COMBINED SUPPLEMENTATIONS

A high whey protein–, leucine-, and vitamin D–enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial^{1–3}


Verreijen et al, AJCN 2015

Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly^{1,2}

Rondanelli et al, Am J Clin Nutr 2016

- «FAST» protein
- Essential-BCAA
- Hydroxy-Methyl-Butirate (HMB)
- Vitamin D

↑ EFFECTIVENESS

NUTRACEUTICALS

CALORIE PROTEIN

GLUCOSE - FAT

NO STRONG DATA FUCUSING on OBESE-SARCOPENIC OBESE INDIVIDUALS!!

Conclusions

- 1) SARCOPENIC OBESITY is potentially a major clinical and prognostic feature in the heterogeneous and growing obese patient population;
- 2) A large body of work is needed to increase AWARENESS and improve its clinical DEFINITION;
- 3) Nutrition should be a therapeutic cornerstone both in prevention and treatment of low muscle mass and function; quality of <u>DIETARY PATTERNS</u> and adequate <u>PROTEIN INTAKE</u> appear to be key nutritional tools;
- A number of nutritional-nutraceutical supplements could play beneficial therapeutic roles including <u>ESSENTIAL and</u> <u>BC AMINO ACIDS</u>, N-3 PUFA, VITAMIN D and ANTIOXIDANTS;
- 5) A large effort in high-quality <u>CLINICAL RESEARCH</u> will be mandatory to define optimal nutritional treatment tools in obese and sarcopenic obese individuals

Thank you for your attention

